home *** CD-ROM | disk | FTP | other *** search
- /*
- C program for floating point log gamma function
-
- gamma(x) computes the log of the absolute
- value of the gamma function.
- The sign of the gamma function is returned in the
- external quantity signgam.
-
- The coefficients for expansion around zero
- are #5243 from Hart & Cheney; for expansion
- around infinity they are #5404.
-
- Calls log and sin.
- */
-
- #include <errno.h>
- #include <math.h>
-
- int errno;
- int signgam = 0;
- static double goobie = 0.9189385332046727417803297;
- static double pi = 3.1415926535897932384626434;
-
- #define M 6
- #define N 8
- static double p1[] = {
- 0.83333333333333101837e-1,
- -.277777777735865004e-2,
- 0.793650576493454e-3,
- -.5951896861197e-3,
- 0.83645878922e-3,
- -.1633436431e-2,
- };
- static double p2[] = {
- -.42353689509744089647e5,
- -.20886861789269887364e5,
- -.87627102978521489560e4,
- -.20085274013072791214e4,
- -.43933044406002567613e3,
- -.50108693752970953015e2,
- -.67449507245925289918e1,
- 0.0,
- };
- static double q2[] = {
- -.42353689509744090010e5,
- -.29803853309256649932e4,
- 0.99403074150827709015e4,
- -.15286072737795220248e4,
- -.49902852662143904834e3,
- 0.18949823415702801641e3,
- -.23081551524580124562e2,
- 0.10000000000000000000e1,
- };
-
- double
- gamma(arg)
- double arg;
- {
- double log(), pos(), neg(), asym();
-
- signgam = 1.;
- if(arg <= 0.) return(neg(arg));
- if(arg > 8.) return(asym(arg));
- return(log(pos(arg)));
- }
-
- static double
- asym(arg)
- double arg;
- {
- double log();
- double n, argsq;
- int i;
-
- argsq = 1./(arg*arg);
- for(n=0,i=M-1; i>=0; i--){
- n = n*argsq + p1[i];
- }
- return((arg-.5)*log(arg) - arg + goobie + n/arg);
- }
-
- static double
- neg(arg)
- double arg;
- {
- double temp;
- double log(), sin(), pos();
-
- arg = -arg;
- temp = sin(pi*arg);
- if(temp == 0.) {
- errno = EDOM;
- return(HUGE);
- }
- if(temp < 0.) temp = -temp;
- else signgam = -1;
- return(-log(arg*pos(arg)*temp/pi));
- }
-
- static double
- pos(arg)
- double arg;
- {
- double n, d, s;
- register i;
-
- if(arg < 2.) return(pos(arg+1.)/arg);
- if(arg > 3.) return((arg-1.)*pos(arg-1.));
-
- s = arg - 2.;
- for(n=0,d=0,i=N-1; i>=0; i--){
- n = n*s + p2[i];
- d = d*s + q2[i];
- }
- return(n/d);
- }